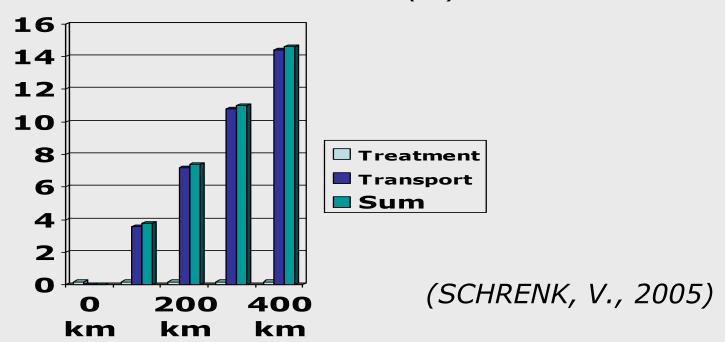


Konzepte für Nachhaltigkeit und Ökoeffizienz

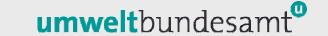

Dietmar MÜLLER

16. Juni 2010

MIKROBIOLOGISCHE BODENSANIERUNG Umweltfreundlich? Nachhaltig?

Ex-situ Behandlung (10.000 t Boden)

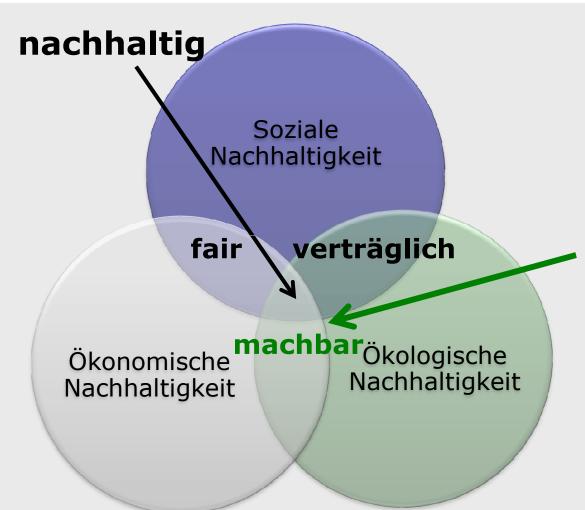
ENERGIEVERBRAUCH (TJ)



INHALT DER PRÄSENTATION

- Nachhaltigkeit und Ökoeffizienz
- Anwendungsmöglichkeiten zur Analyse und zum Vergleich von Technologien
- Ökobilanzierung Anwendung in abgestufter Form
- Ökoeffizienz als Indikator für Nachhaltigkeit

WAS IST NACHHALTIGKEIT?


- langfristig?
- endgültig?
- Ökologischer Fußabdruck?
- CO₂-Reduktion?
- Toxizitätsäquivalente?

NACHHALTIGKEIT UND ÖKOEFFIZIENZ

ÖKOEFFIZIENZ

- Ursprung: Kennzahl um Produkte und Produktionsprozesse wirtschaftlich zu gestalten
- Ökonomische und ökologische Analyse von Prozessen und Produkten
 - environmental
 - productivity
 - intensity
 - improvement costs
 - cost-effectiveness

Was ist ÖKOEFFIZIENZ?

Verhältnis des **Wertes** eines Produktes zu den durch den Herstellungsprozess auf die **Umwelt** ausgeübten Auswirkungen

U ... Umweltauswirkungen

- → Visionen/Ziele dazu:
- Decoupling: gleicher Wert, geringere Umweltauswirkung
- Faktor 4: Wert verdoppelt, Umweltauswirkungen halbiert
- → Wie definiert/misst man Umweltauswirkungen ?!

ÖKOEFFIZIENZ Wofür? Wie?

ZWECK

Analyse und Beschreibung von Kosten im Verhältnis zu ökologischen Auswirkungen

<u>ANFORDERUNGEN</u>

- → Nutzung einfach verfügbarer Daten
- → Ergänzung durch gut und leicht erfassbare Daten
- → Vergleichsmöglichkeiten mit anderen Sektoren
- → Einfach verständlich für alle Beteiligten

Analyse und Vergleich von Technologien

→ Dampf-Luft-Injektion - im Vergleich mit konventioneller Bodenluftabsaugung

[Daten: VEGAS and reconsite]

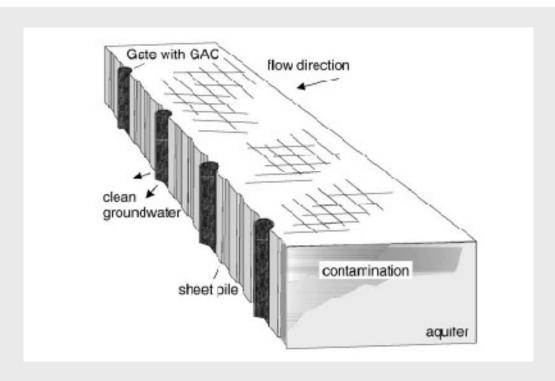
→ Permeable (durchströmte) Reinigungswand

[Daten: Universität Tübingen & Leuphana Universität Lüneburg]

Dampf-Luft-Injektion im Vergleich mit konventioneller Bodenluftabsaugung

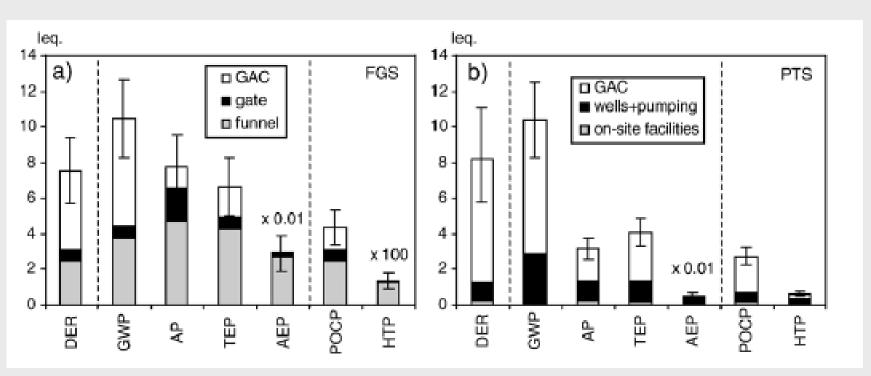
Projekt	Mühlacker	Plauen
Zeit	87 % (1,25 statt 10 Jahre)	95 % (> 8 Jahre)
Kostenersparnis	34 %	56 %
Energie	59 %	55 %

Beurteilung Dampf-Luft-Injektion

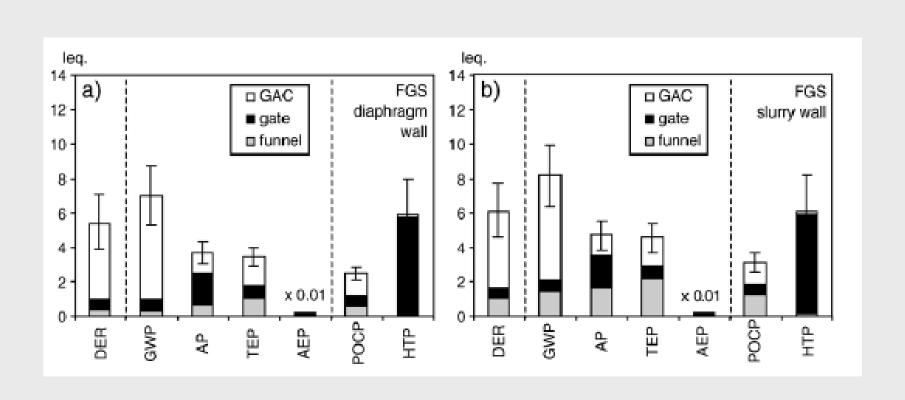

Im Vergleich zur konventionellen Bodenluftabsaugung

- sekundäre Umweltauswirkungen deutlich geringer (Faktor > 2)
- Kosten im Allgemeinen deutlich geringer oder wenigstens gleich
- ZEIT ist der ENTSCHEIDENDE FAKTOR! CKW-Schäden können wesentlich rascher saniert werden
- → eine ökoeffiziente Innovation,
- die zu einer wesentlichen Zeit- und Kostenersparnis beitragen kann.
- → "FAKTOR-4-Technologie"

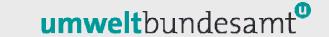
Permeable (durchströmte) Reinigungswand



Konventionell	Sperrbrunnen (PTS)	Aktivkohle
Innovation	Funnel&Gate (FGS)	Aktivkohle


Permeable Wand (FGS) im Vergleich mit Sperrbrunnen (PTS)

- 7 Indikatoren für Umweltauswirkungen (z.B. Treibhausgase: GWP; Humantox. Potenzial: HTP) normiert und als Einwohneräquivalent dargestellt
- Darstellung in Bezug auf die wesentlichen Verfahrenselemente



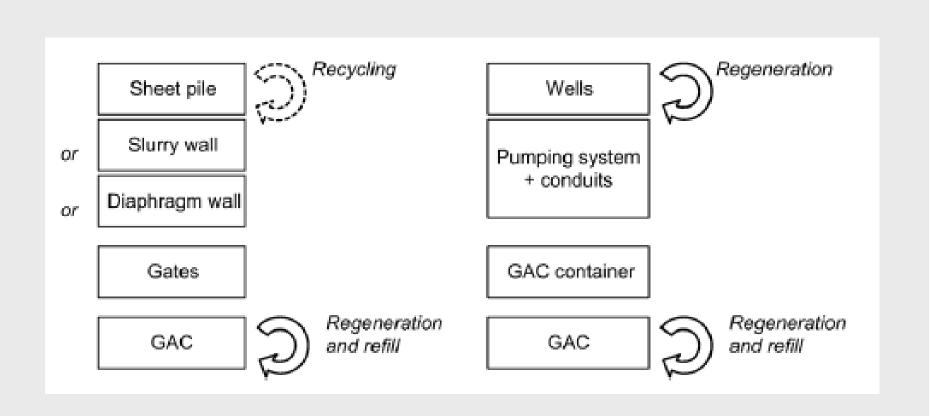
Permeable Wand Alternative Bauweisen

PRB (slurry wall) vs. PRB (diaphragm wall): Impacts normalized and expressed as inhabitant equivalents

Permeable Wände

Permeable Wände

- können in Abhängigkeit von den konkreten Standortverhältnissen ökoeffizient sein,
- Möglichkeiten zur Reduktion von Umweltauswirkungen ergeben insbesondere in Zusammenhang mit der Errichtung der Dichtwände
- in Abhängigkeit der Schadensart/Schadstoffe kann das auch in Bezug auf die Behandlung des verunreinigten Grundwassers zutreffen



Beurteilung sekundärer Umweltauswirkungen Ökobilanzierung (LCA) – abgestufte Umsetzung

	Datenqualität und -analyse + überblicksweise ++ selektiv +++ umfassend			
	wesentliche Element u. Prozesse	Umweltauswirkungen		
		Kategorien	Parameter	Beurteilung
Stufe 1: Vorbewertung	+	+++	-	qualitativ
Tier 2: Vereinfachtes LCA	++	+	+	Quantitativ
Tier 3: LCA	+++	+++	+++	quantitativ

Beschreibung Wesentl. Elemente & Prozesse BEISPIEL: Vergleich FGS & PTS

VEREINFACHTES LCA (Stufe 2)

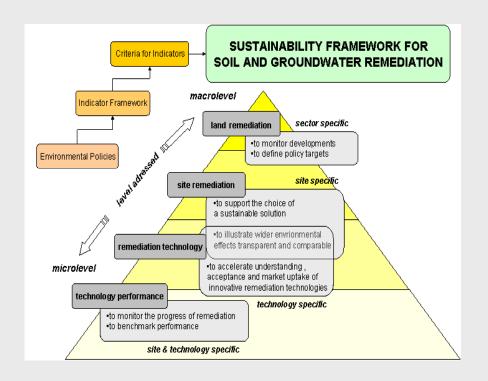
<u>Analyse</u> und <u>Beurteilung</u> quantitativ, aber Schwerpunkte (Vereinfachungen) durch:

- Prozesse und Element, die auf Stufe 1 als wesentlich qualifiziert wurden (oder wie für 5 verschiedene Technologiegruppen von SCHRENK 2006 vorgeschlagen)
- Umweltauswirkungen: ausgewählte Kategorien
- Abschneidekriterium: 20 % (statt 5 %)
- → Als Voraussetzung für eine Analyse und Interpretation der Ergebnisse müssen eine "übliche" (konventionelle) Referenztechnologie oder ein Referenzprojekt definiert und quantifiziert sein

Vereinfachtes LCA (Stufe 2) Vorschläge/Empfehlungen (1)

	KATEGORIE	PARAMETER
INPUTS	Energieverbrauch	erneuerbar, nicht erneuerbar & insgesamt [kWh]
	Wasserverbrauch	Wasser [m³]
OUTPUTS	Abfälle	gefährliche & nicht-gefährliche Abfälle (in t)
Sekundäre Wirkungen	Treibhausgase	Kohlendioxid (kg CO ₂)

Vereinfachtes LCA (Stufe 2) Vorschläge/Empfehlungen (2)

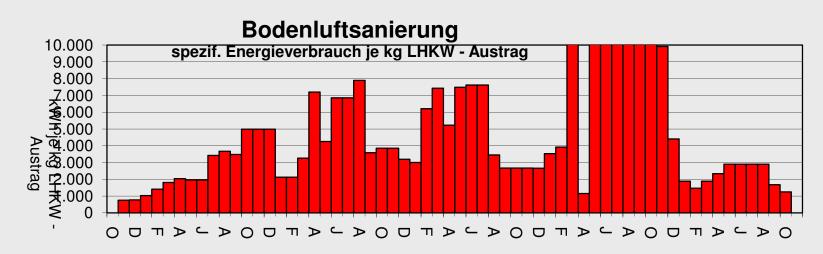

Wesentliche Elemente zur Beschreibung der Ergebnisse

- Tabellen oder Abbildungen zur Gliederung der wesentlichen Elemente und Prozesse einer/eines Technologie/Projektes mit Angaben oder Darstellung welche Elemente maßgeblich zu Umweltauswirkungen beitragen
- Übersichtstabelle der Ergebnisse für alle geeigneten Technologien/Projekte
- Abbildungen (z.B. Säulendiagramme) zur Darstellung der Ergebnisse im Vergleich zu einer/einem Referenztechnologie

Ökoeffizienz als Indikator für Nachhaltigkeit in der Altlastensanierung (1)

<u>Primäre Umweltauswirkungen</u> <u>(nicht monetäre Werte)</u>

Flächenrückgewinn (m²) Schadstoffmasse (t) Mass of treated soil (t)


<u>Sekundäre Umweltauswirkungen</u> (Vereinfachtes LCA)

- Energieverbrauch (kWh)
- Wasserverbrauch (m³)
- Abfallentstehung (t)
- CO₂-Emissionen (t)

Ökoeffizienz als Indikator für Nachhaltigkeit in der Altlastensanierung (2)

Projektenergie-Index (SCHRENK, V., 2005) =
 Energieverbrauch einer Variante, eines Projektes
 normiert auf die Anwendung von Referenzprojekt
 /technologie (z.B. ex-situ thermische Behandlung)

ÖKOEFFIZIENZ Möglicher Nutzen entsprechender Konzepte

ENTWICKLUNG UND AKZEPTANZ VON TECHNOLOGIEN

Beschreibung der Vorteile neuer Technologien

ANWENDUNG VON TECHNOLOGIEN

- erweiterte, besser vergleichbare Entscheidungsgrundlagen
- Ausschreibung von Sanierungsprojekten
- Kontrolle der effizienten Anwendung
- Kommunikation ökologischer und ökonomischer Vorteile

<u>ALTLASTENSPEZIFISCHE DATENERHEBUNG UND -</u> <u>AUSWERTUNG</u>

 Diskussion und Definition von umweltpolitischen Maßnahmen und Zielen

Danke für Ihre Aufmerksamkeit!