

Bioventing

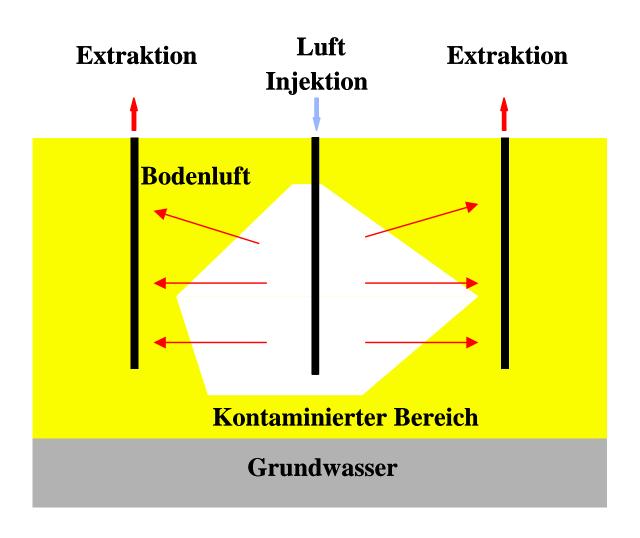
Herausforderungen in der praktischen Anwendung

Inhalt

Planung = Vermeidung von vorhersehbaren Fehlern

- 1.Erkundung mit 3D Untergrundaufbau und 3D Schadensbild
- 2.biol. dim. Parameter und Vorversuche
- 3.phys. dim. Parameter und Vorversuche
- 4. Planung mit Zieldefinition
- 5. Feldumsetzung

Vorbemerkung



- <u>BIO</u>VENTING
- ERB aus Leitfaden gelten
- Vorversuche It. Leitfaden nötig aber nicht hinreichend

Dimensionierungsversuche nötig

Bioventing

Biolog. Dim.

<u>Zielsetzungen:</u>

- biolog. Aktivität
- Milieu-limitiernde Faktoren
- Abbaukinetik
- Abbaugrenzen
- Belüftungsreichweiten

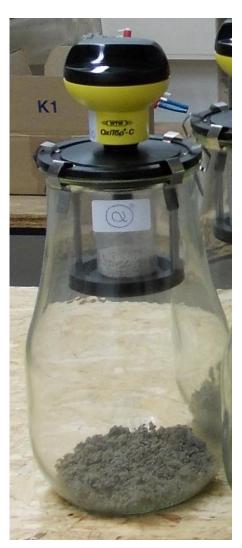
Biolog. Dim.

Instrumente:

- Atmungstest AT₄
- Abbautests
 - Suspensionsversuch
 - Säulenversuch

In situ Respiration

Biolog. Atmung (AT_4)



Zielsetzung:

- mikrobielle Aktivität
- Limitierende Faktoren

Prinzip:

 Manometrische Messung der Druckänderung im geschlossenen System innerhalb von 4 Tagen

Ölalarm: 059800 7777

Kontakt: office@terra.cc

Biolog. Atmung (AT₄)

$$AT_4 = \frac{M_{O_2} \cdot V_f \cdot \Delta p}{m_B \cdot R \cdot T}$$

 AT_4

 M_{02}

R

T

Δр

 \mathbf{m}_{B}

 V_f

Atmungsaktivität

Molgewicht Sauerstoff

allg. Gaskonstante

absolute Temperatur

Druckabnahme

Masse Boden

freies Gasvolumen

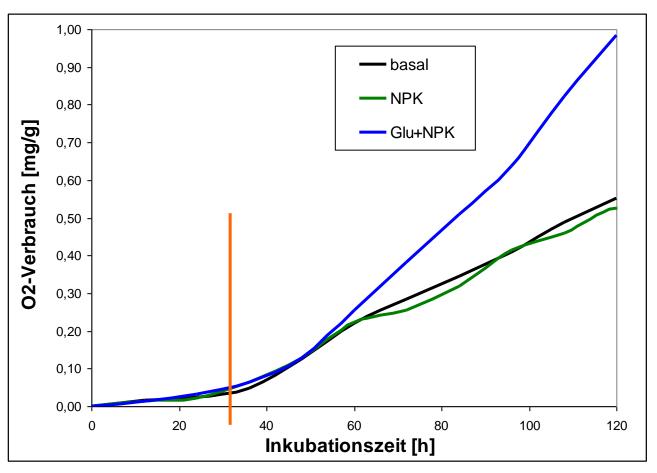
 $[mg O2/g \times 4d]$

[g/mol]

[mbar/mol x K]

[K]

[mbar/4d]


[kg]

[1]

Biolog. Atmung (AT_4)

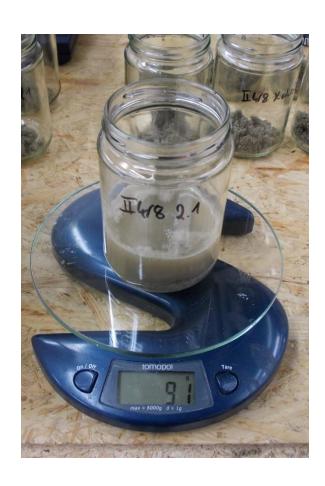
Ergebnis:

Biolog. Atmung (AT_4)

Interpretation:

Parameter	Aktiv	Einheit	
	schwach	groß	
AT4	0,02	0,50	[mgO2/g(Boden)*4d]

Suspensionsversuch



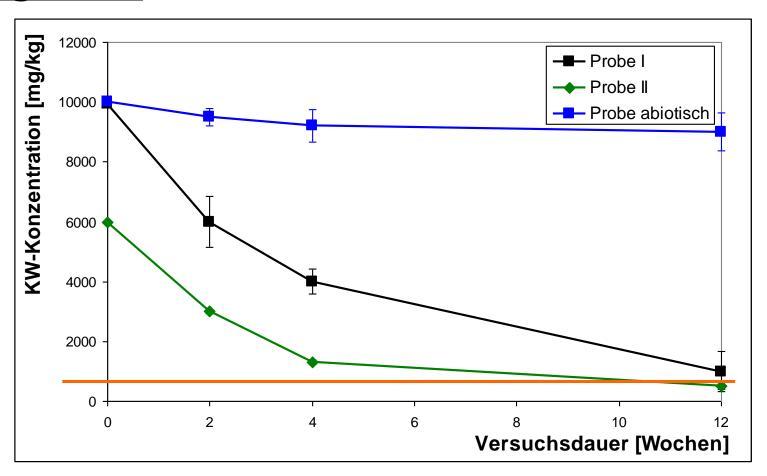
Zielsetzung:

- Abbaukinetik
- Abbaugrenze

Prinzip:

- Abbau unter optimalen Beding.
- Periodische chem. Analyse

Suspensionsversuch



Suspensionsversuch

Ergebnis:

Säulenversuch

Zielsetzung:

- Abbaukinetik
- Technologie testen
- Betriebsparameter

Prinzip:

- in situ-Bedingungen simulieren
- periodische chem. Analyse

Ölalarm: 059800 7777

Säulenversuch

Säulenversuch

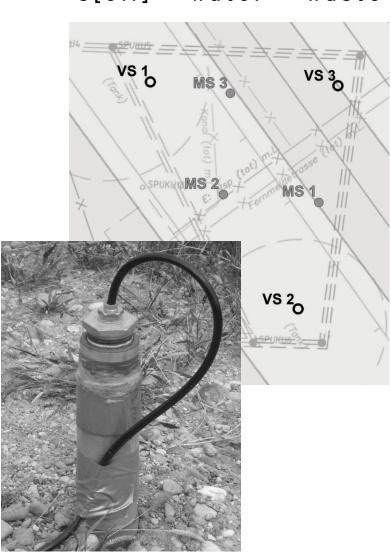
Ergebnis:

Abbauversuche

Interpretation:

Parameter	Abbauleistung		Einheit
	schwach	groß	
Abbaurate	1	12	[mg KW/ kg(Boden)*d]

In situ Respiration

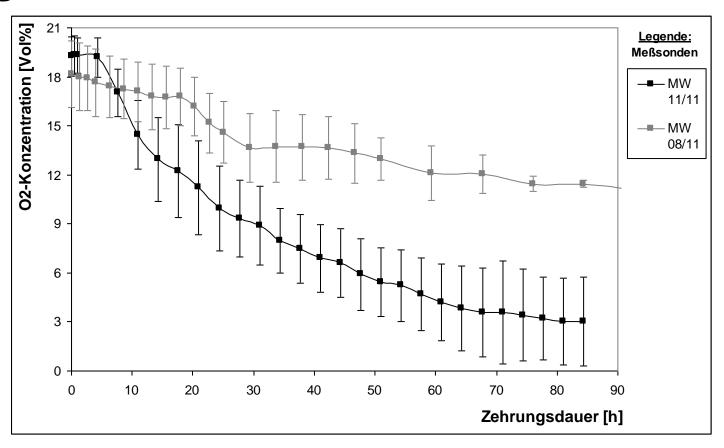


Zielsetzung:

- Sauerstoffzehrung
- Einblasraten
- Einsatzreichweiten

Prinzip:

- aerobisierter Ausgangszustand
- in situ-Messung der Sauerstoffabnahme



Ölalarm: 059800 7777

In situ Respiration

Ergebnis:

In situ Respiration

Interpretation:

Parameter	Aktivität		Einheit
	schwach	groß	_
Zehrungsrate	2	12 6	[Vol%O2/d] [mgO2/l*d]

Abbaurate (Venting)

$$k_B = \frac{-x_O \cdot \rho_{O_2} \cdot \theta \cdot \beta_{CO} \cdot (0,01)}{\rho_B}$$
 (Leeson & Hinchee, 1998)

k_{B}	biologische Abbaurate	[mg/kg x d]
x _o	Sauerstoffzehrung	[%/d]
ρ_{02}	Dichte Sauerstoff	[mg/l]
૭	gasgefüllter Porenraum des Bodens	[m³/m³]

 eta_{co} Massenverhältnis repräsentativer Kohlenstoff (Hexadecan) zu Sauerstoffverbrauch ho_{B} Dichte Boden [g/cm³]

Belüftungsrate (Venting)

$$Q = \frac{-x_{O} \cdot V \cdot 9}{(c_{O_{max}} - c_{O_{min}}) \cdot 60 \left[\frac{min}{h}\right]}$$

(Leeson & Hinchee, 1998)

Q	Belüftungsrate	[m³/min]
$\mathbf{x_o}$	Sauerstoffzehrung	[%/d]
V	Volumen des behandelten Untergrunds	[m³]
ð	gasgefüllter Porenraum des Bodens	[m³/m³]
C _{Omax}	maximale Sauerstoffkonzentration	[%]
C _{Omin}	kritische Sauerstoffkonzentration	[%]

Einflußradius (Venting)

$$R_{E} = \sqrt{\frac{Q \cdot (c_{O_{max}} - c_{O_{min}})}{\pi \cdot h \cdot \vartheta \cdot x_{O}}}$$

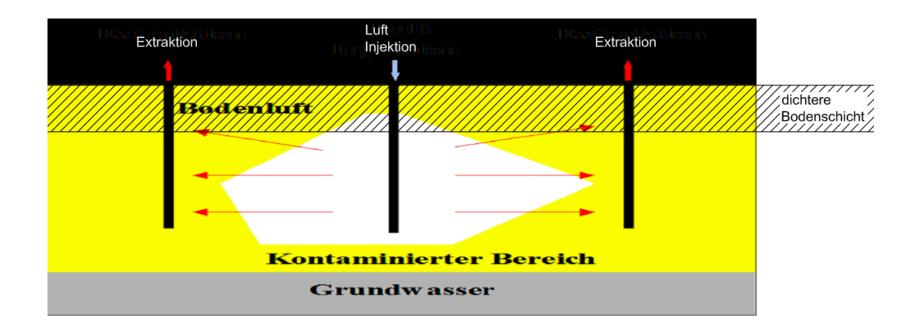
(Leeson & Hinchee, 1998)

K _E	Eintiußradius	լՠյ
Q	Belüftungsrate	[m³/d]
C _{Omax}	maximale Sauerstoffkonzentration	[%]
C _{Omin}	kritische Sauerstoffkonzentration	[%]
П	Pi	
h	Schichtdicke des belüfteten Untergrunds	[m]
૭	gasgefüllter Porenraum des Bodens	[m ³ /m ³]
x _o	Sauerstoffzehrung	[%/d]

Beispiel (Venting)

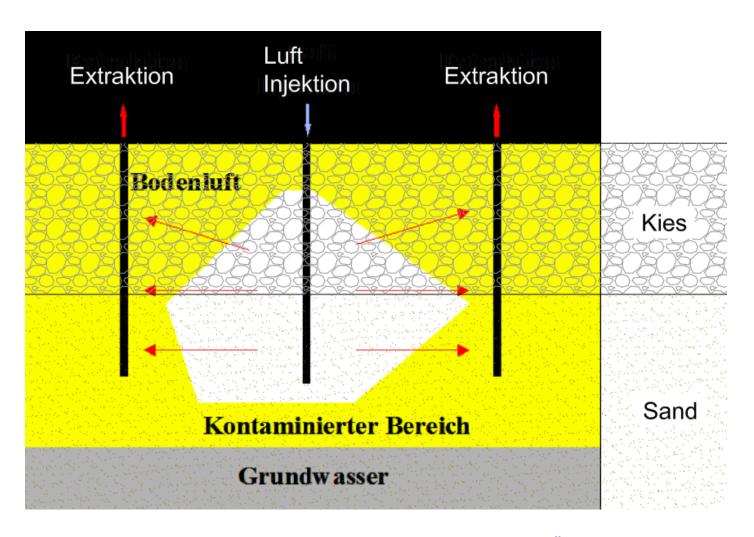
Einflussradius	18	10	m/Pegel	
Belüftungsrate pro Pegel	32	11	m³(Luft)/h*Pegel	
Anzahl Belüfungspegel	1	3	Stk	
Belüftungsrate:	3	2	m³(Luft)/h	
minimale Sauerstoffsättigung	5		Vol% O2	
Zehrungsrate: maximale Sauerstoffsättigung	!	8	Vol%O2/d Vol% O2	
Sanierungsfläche Tiefe ungesätt. Bodenzone	1000 6		m ² m	

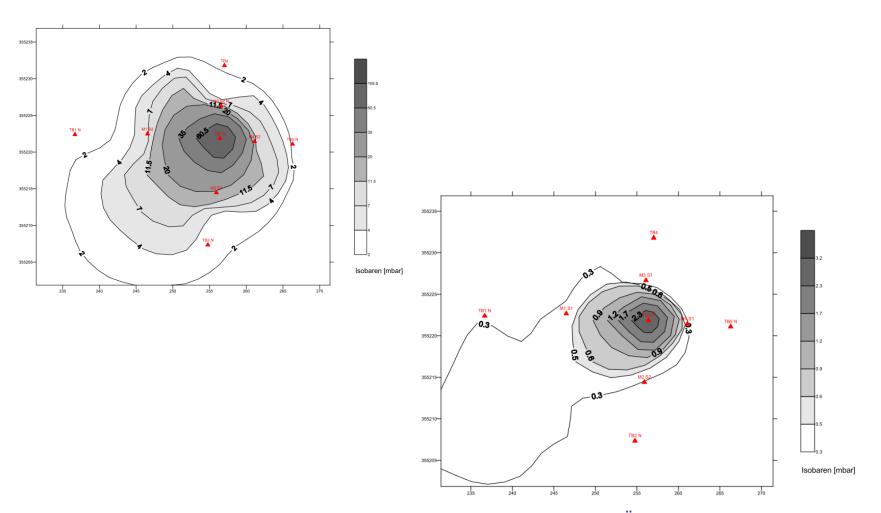
Phys. Dimensionierung Interessierende Größen:



Gegebene Fläche:

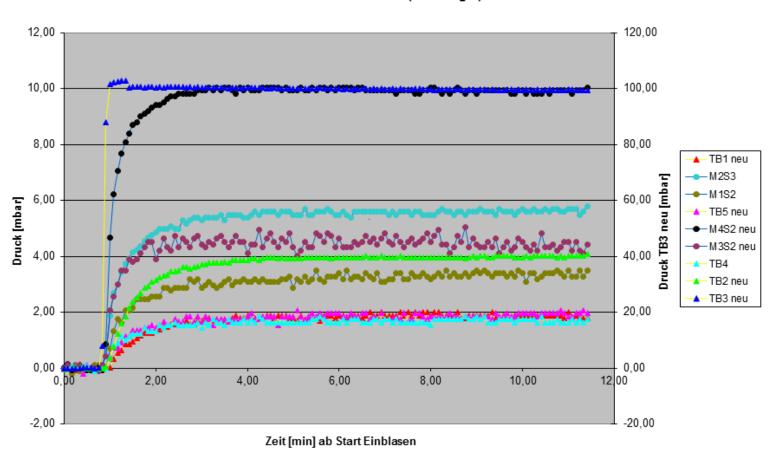
- Wieviele Pegel
- Wieviel Luft
- Druck?


Venting phys. Dim.



Venting phys. Dim.

Venting phys. Dim. S[0il] · water · waste BL- Absaug/Einblasversuch


Kontakt: office@terra.cc

Ölalarm: 059800 7777

Venting phys. Dim.

Einblasen mit 150 m3/h (tiefe Pegel)

Venting phys. Dim.

Zusammenfassung

Dimensionierungsvorversuche sind nötig für:

- Phys. Reichweitenbestimmung
- Biol. Reichweitenbestimmung
- Bestimmung Dotationsbedarf
- Abschätzung der Zeitkomponente
- Abschätzung des Endzustandes

Alternative - RISIKO

Schlechte Planung = Einbau von vermeidbaren Fehlern

- 1.Zu viele Annahmen
- 2. Annahmen nicht im Feld überprüft
- 3.Abkürzungen
- 4. Unrealistische Ziele
- 5. Optimistische Zeitplanung
- 6. Etc.

Feldumsetzung

- Pegelbau Untergrundmodell überprüfen
- Anlagenbau EX Schutz Konzept festlegen
- Belüftungsbetrieb festlegen
- On-line und Intervallmonitoring festlegen
- Betriebsdaten mit Planung abgleichen

Feldumsetzung

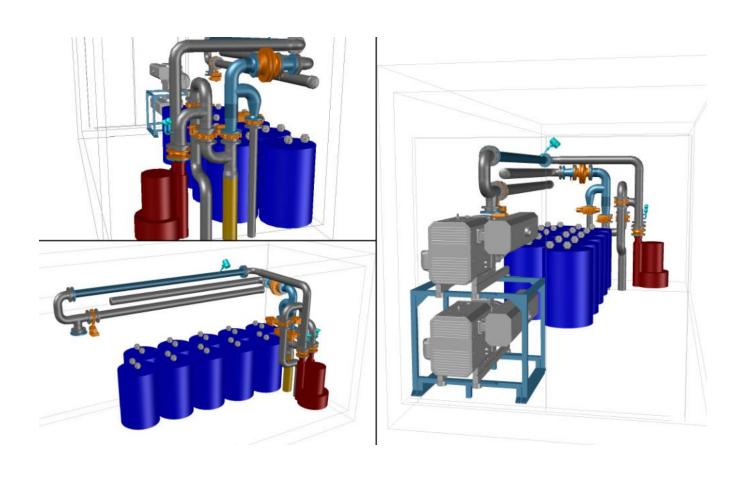
Bestandteile:

- Bodenorgane Luftpegel
- Zentrale Be-/Entlüftungseinheit mit Steuerung und Messung
- Abluftaufbereitung
- Verbindungsleitungen

Be- Entlüftung

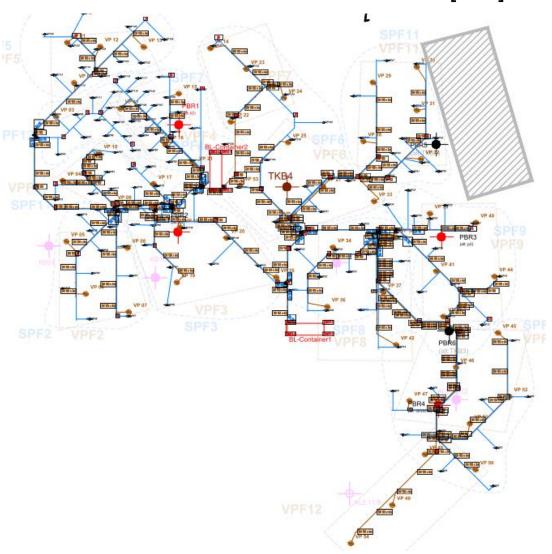
Be- Entlüftung

Be- Entlüftung



Kontakt: office@terra.cc

Ölalarm: 059800 7777



Verbindungsleitungen

Verbindungsleitungen

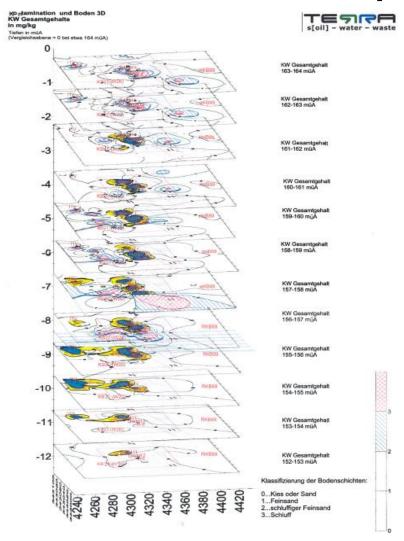
Verbindungsleitungen

Zusammenfassung

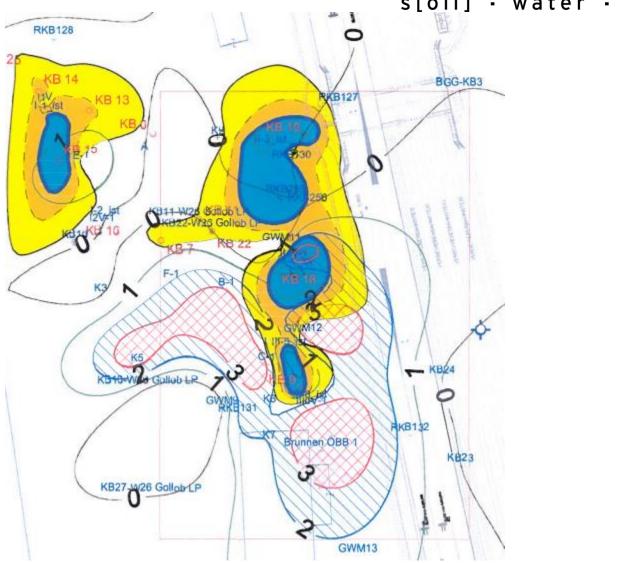
- Vorversuche statt Vermutungen
- Planung mit realistischen Zielen
- Überprüfung der Planung im Bau
- Fachgerechte Ausführung
- Messungen im Betrieb
- Nachführen der Planung im Betrieb

DANKE!

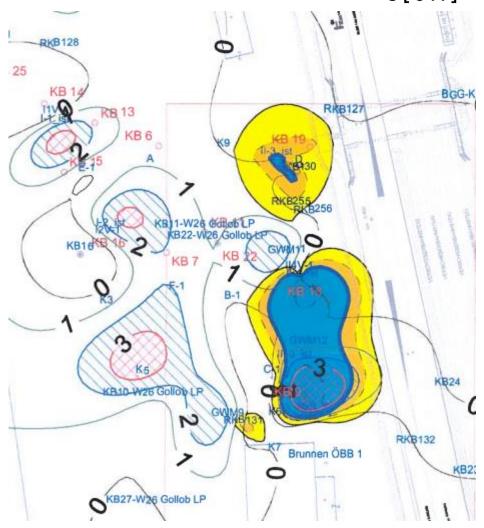
Zusammenfassung



3 D Schdensbild
Gute Erkundung
3D Untergundmodell
Dichtere Bereiche

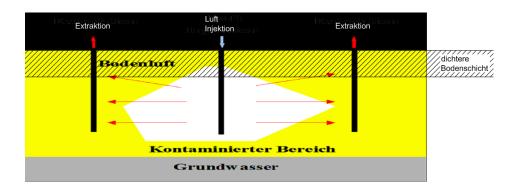

TERRABREATHE

3D Untergrundmodell TETT

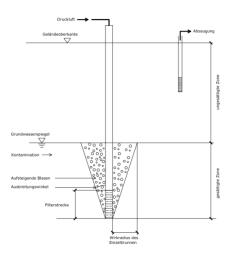


Kontakt: office@terra.cc

Ölalarm: 059800 7777



Venting phys. Dim.



Systemanordnung:

Horizontal

Vertikal

Kontakt: office@terra.cc

Ölalarm: 059800 7777

Venting phys. Dim.

Interessierende Größen:

Gegebene Fläche:

- Schichtaufbau und Bel. System
- Wieviele Pegel cut off Kriterium
- Wieviel Luft = Wieviel Pegel
- Druck bestimmt nur die Luftmenge

Zusammenfassung

- Pegelbau Untergrundmodell überprüfen
- Anlagenbau EX Schutz Konzept festlegen
- Belüftungsbetrieb festlegen
- On-line und Intervallmonitoring festlegen
- Betriebsdaten mit Planung abgleichen