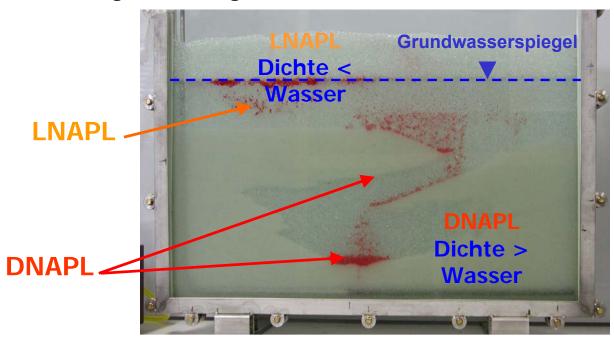
# In-Situ-Sanierung mit Hilfe der Chemie - (wie) geht das ?



**Hans-Peter Koschitzky &** Norbert Klaas Versuchseinrichtung zur Grundwasser- und Altlastensanierung, Universität Stuttgart, <u>koschitzky@iws.uni-stuttgart.de</u>

5. ÖVA Technologieworkshop
Anwendung chemischer In-situ-Verfahren –
(direkte) Einbringung von Stoffen ins Grundwasser"
Wien, Democenter, 20. November 2014


Kos

#### Was können Sie erwarten

- Entstehung von Schadensherden
- "Etwas" Redox-Chemie
- Reagenzien für In-Situ-Chemische-Oxidation (ISCO) und ...Reduktion (ISCR)
- Besonderheiten / Probleme bei ISCO
- Braunsteinbildung
- Kurzcharakterisierung / Fazit

## Entstehung von Schadensherden: LNAPL – DNAPL

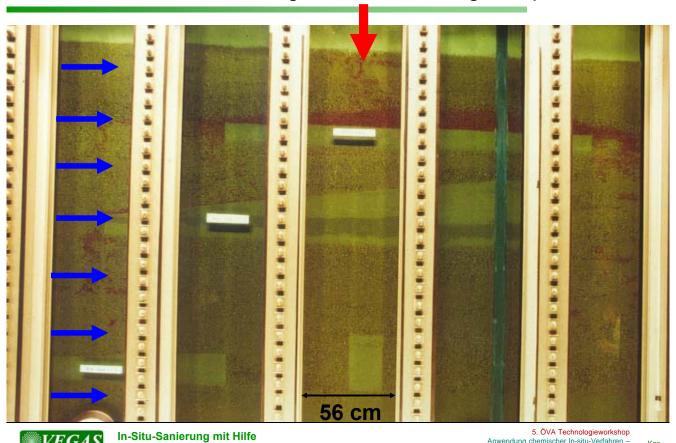
# Sanierungstechnologien erforderlich



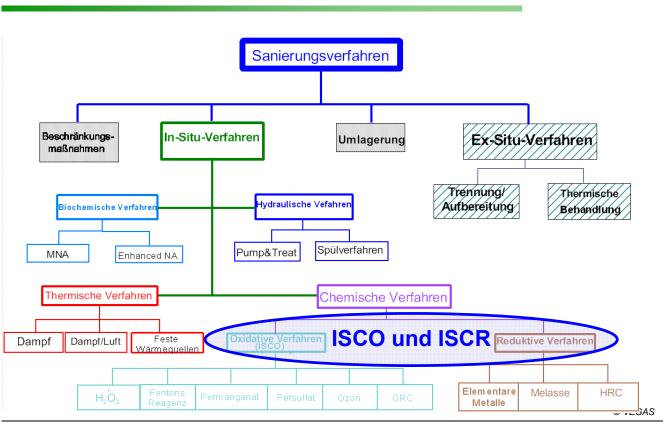
NAPL = Non-aqueous phase liquid (nicht mit Wasser mischbar)



In-Situ-Sanierung mit Hilfe der Chemie - (wie) geht das ?


5. ÖVA Technologieworkshop Anwendung chemischer In-situ-Verfahren – (direkte) Einbringung von Stoffen ins Grundwasser Wien, Democenter, 20.11.2014

Kos 3


## Große Rinne



# CKW - Versickerung in einem inhomogen Aquifer



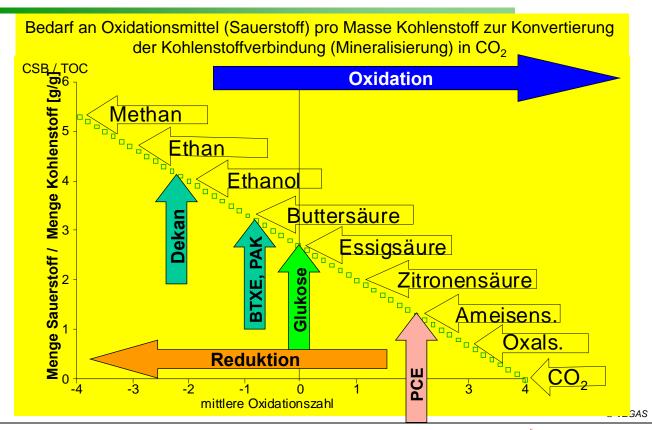
Klassifizierung der Sanierungsverfahren



VEGAS

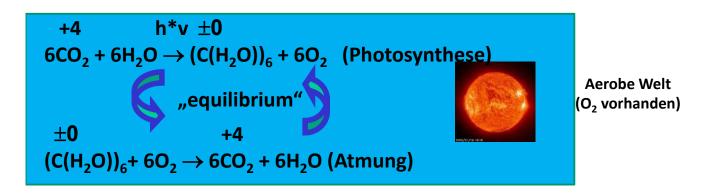
der Chemie - (wie) geht das ?

Anwendung chemischer In-situ-Verfahren – (direkte) Einbringung von Stoffen ins Grundwasser Wien, Democenter, 20.11.2014


#### Oxidationszahlen

In einem Molekül werden die Elektronen formal dem elektronegativeren Atom im Periodensystem zugewiesen.

Die sich ergebende "Ladung" jedes Atoms ist die formale Oxidationszahl




## Oxidationsstufen des Kohlenstoffs

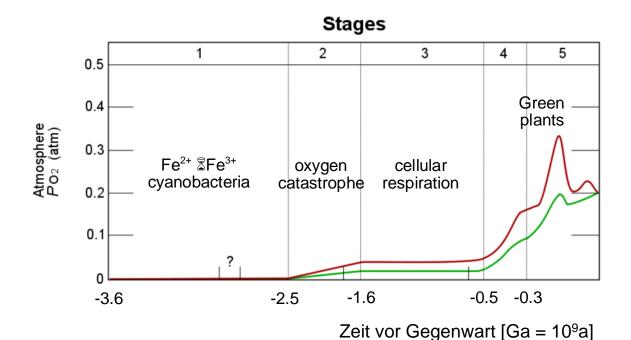


#### Die Welt der REDOX-Reaktionen

Basics: Wie das Leben funktioniert



© VEGAS




In-Situ-Sanierung mit Hilfe der Chemie - (wie) geht das ?

5. ÖVA Technologieworkshop Anwendung chemischer In-situ-Verfahren – (direkte) Einbringung von Stoffen ins Grundwasser Wien, Democenter, 20.11.2014

Kos

# Sauerstoff in der Atmosphäre



#### Die Welt der REDOX-Reaktionen

Basics: Wie das Leben funktioniert



 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$  (oxidativer Abbau, Verbrennung)

(Bildung von Kohlenwasserstoffen, Öl, Kohle)

Anaerobe Welt (O<sub>2</sub> nicht vorhanden)

Menschliche Aktivität

© VEGAS



In-Situ-Sanierung mit Hilfe der Chemie - (wie) geht das ?

5. ÖVA Technologieworkshop Anwendung chemischer In-situ-Verfahren – (direkte) Einbringung von Stoffen ins Grundwasser Wien, Democenter, 20.11.2014

Kos 11

## Energiegewinn durch REDOX-Reaktionen

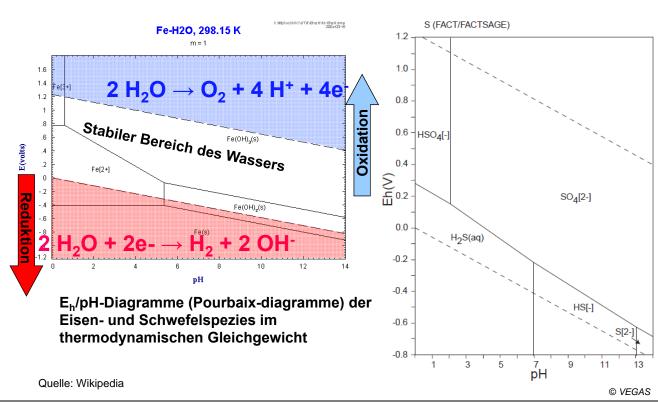
#### Mikrobielle Redox-Reaktionen

| Redox zones           | Redoxreaktionen                                                                                                                                      | ∆G° [kcal/e | eq]                           |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------|
| Aerobic zone          | 1/48 C <sub>10</sub> H <sub>8</sub> + 1/4 O <sub>2</sub> → 10/48 CO <sub>2</sub> + 1/12 H <sub>2</sub> O                                             | - 25,43     |                               |
| Nitrate reducing zone | $1/48  \text{C}_{10} \text{H}_8 + 1/5  \text{NO}_3$ $1/5  \text{H}^+ \rightarrow 10/48  \text{CO}_2 + 11/60  \text{H}_2 \text{O} + 1/10  \text{N}_2$ | - 23,88     | nergiegewinn<br>schwindigkeit |
| Mn(IV) reducing zone  | $1/48 C_{10}H_8 + 1/2 MnO_2(s) + 1/2 HCO_3^- + H^+ \rightarrow 10/48 CO_2 + 1/2 MnCO_3 + 7/12 H_2O$                                                  | - 18,88     |                               |
| Fe(III) reducing zone | $1/48 C_{10}H_{8}+FeOOH(s)$ $1/2 HCO_{3}^{-} + H^{+} \rightarrow 10/48 FeCO_{3} + 76/48 H_{2}O$                                                      | - 5,66      | mender E<br>aktionsge         |
| Sulfate reducing zone | 1/48 $C_{10}H_8 + 1/8 SO_4^2 + 3/16 H^+ \rightarrow 10/48 CO_2 + 1/16 H_2S + 1/16 HS^- + 1/12 H_2O$                                                  | - 1,67      | Abnehmendeı<br>und Reaktions  |
| Methanogenic zone     | $1/48 \text{ C}_{10}\text{H}_8 + 1/4 \text{ H}_2\text{O} \rightarrow 4/48 \text{ CO}_2 + 1/8 \text{ CH}_4$                                           | - 0,99      | _                             |



#### Chemische Verfahren

- Schadstoffe werden durch Zugabe eines chemischen
   Oxidationsmittels durch "kalten Verbrennung" abiotisch zerstört
- > Ziel ist die vollständige Umsetzung zu umweltneutralen Stoffen
- Oxidations-Reaktion erfolgt im Grundwasserleiter sehr schnell, sobald/sofern wirksamer Kontakt Oxidationsmittel und organischer Schadstoff hergestellt
- o In-situ-chemische-Oxidation ISCO technische Machbarkeit und Realisierbarkeit unterscheidet sich je nach Oxidationsmittel: Kalium-/Natriumpermanganat, Fentons Reagenz, Persulfat und Ozon
- In-situ-chemische-Reduktion ISCR Metallisches Eisen als wirksames Reduktionsmittel, In-situ-Einsatz über Nano- und Mikroeisen-Injektion, ISCR von Chrom VI




In-Situ-Sanierung mit Hilfe der Chemie - (wie) geht das ?

5. ÖVA Technologieworkshop Anwendung chemischer In-situ-Verfahren – (direkte) Einbringung von Stoffen ins Grundwasser Wien, Democenter, 20.11.2014

Kos 13

# Limitierung im aquatischen System



#### Oxidierbare oder reduzierbare Kontaminanten

## **Oxidierbare Kontaminanten**

- Kohlenwasserstoffe
- PAK
- BTXE
- CKW
- (Ammonium → Nitrat)
- → Endprodukte CO<sub>2</sub>, Wasser

## Reduzierbare Kontaminanten

- CKW
- (Nitrat  $\rightarrow$   $N_2$ )
- (Chrom (VI) → Chrom (III))
- → Endprodukte Kohlenwasserstoffe, Chloride

© VEGAS



In-Situ-Sanierung mit Hilfe der Chemie - (wie) geht das ?

5. ÖVA Technologieworkshop Anwendung chemischer In-situ-Verfahren – (direkte) Einbringung von Stoffen ins Grundwasser Wien, Democenter, 20.11.2014

Kos

# ISCO - Anwendungsmöglichkeiten

ITVA

Innovative In-situ-Sanierungsverfahren

Tabelle 9.1: Schadstofftypen und Boden-/Prozessparameter für die Anwendung verschiedener ISCO-Verfahren, geändert nach Keijzer et al. (2004)

| ISCO-Verfahren                   | Schad                                                                                   |                                                                                      | Boden-/Prozessparameter                                                                       |                                                                                          |
|----------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| isco-veriahren                   | geeignet                                                                                | ungeeignet                                                                           | Günstig                                                                                       | ungünstig                                                                                |
| Fentons Reagenz                  | CKW                                                                                     |                                                                                      | 2 < pH < 6                                                                                    | pH > 6                                                                                   |
|                                  | BTEX<br>niedermolekulare<br>PAK<br>Kurzkettige Ali-<br>phaten<br>Freie Cyanide          | höher moleku-<br>lare PAK<br>Langkettige<br>Aliphaten<br>Cyanid-Kom-<br>plexe<br>PCB | Org. Subst. gering<br>Permeabilität hoch<br>Heterogenität ge-<br>ring                         | Org. Subst. hoch<br>Permeabilität<br>Gering<br>Heterogenität<br>hoch                     |
| Ozon                             | CKW<br>(Halogen-Alkene)<br>BTEX<br>niedermolekulare<br>PAK                              | Halogen-Al-<br>kane  höher moleku-<br>lare PAK  MKW  PCB                             | pH niedrig<br>Bodenfeuchtigkeit<br>gering<br>Permeabilität<br>Hoch<br>Heterogenität<br>Gering | pH hoch<br>Bodenfeuchtigkeit<br>hoch<br>Permeabilität<br>Gering<br>Heterogenität<br>hoch |
| Kalium-/ Natrium-<br>permanganat | CKW<br>(Halogen-Alkene)<br>Toluol, Xylol<br>Ethylbenzol                                 | Halogen-Al-<br>kane<br>Benzol<br>MKW<br>PAK<br>PCB<br>Cyanide                        | Permeabilität hoch<br>Heterogenität<br>Gering                                                 | Permeabilität<br>gering<br>Heterogenität<br>hoch                                         |
| Persulfat<br>(nicht aktiviert)   | CKW<br>(Halogenalkene)<br>Toluol, Xylol<br>Ethylbenzol,<br>kurzkettige MKW              | Halogen-Al-<br>kane<br>Benzol<br>langkettige<br>MKW<br>PCB                           | Permeabilität<br>Hoch<br>Heterogenität<br>Gering                                              | Permeabilität<br>Gering<br>Heterogenität<br>hoch                                         |
| Persulfat<br>(aktiviert)         | CKW<br>(Halogenalkane<br>ualkene)<br>BTEX<br>kurzkettige MKW<br>niedermolekulare<br>PAK | langkettige<br>MKW<br>hoher moleku-<br>lare PAK<br>PCB                               | Permeabilität<br>Hoch<br>Heterogenität<br>Gering                                              | Permeabilitat<br>gering<br>Heterogenitat<br>hoch                                         |





#### ISCO - Eingesetzte Reagenzien

- Kalium/Natrium-Permanganat (Na/KMnO<sub>4</sub>)
   infiltrierbar, oxidiert CKW, PAK, Braunsteinausfällung, langsame, beherrschbare
   Reaktion, u.U. Schwermetallproblem, "kostengünstig"
- Persulfat (Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>)
   Versauerung Aquifer, pH < 4, oxidiert BTEX, CKW, PAK, langsame Reaktion,</li>
   Aktivator (Fe(II)) erforderlich, Fe(III)-Bildung, hohe Einsatzmenge (insbesondere
- Fentons Reagenz OH-Radikale (H<sub>2</sub>O<sub>2</sub> & FeSO<sub>4</sub> & H<sub>2</sub>SO<sub>4</sub>)
   Druckinjektion, pH < 4, oxidiert BTEX, CKW, PAK, Fe(III)-Bildung, schnelle</li>
   Reaktion, stark exoterm, schwer kontrollierbar, hohe Einsatzmenge (kalkreiche Böden), gasförmig in UZ möglich, mittleres Preisniveau
- Ozon
   gasförmige Injektion, bevorzugt UZ, reaktivstes Oxidationsmittel, Explosionsgefahr, brandfördernd, Atemwegsgift, krebserregend, hoher Sicherheitsaufwand (Arbeitsschutz), Erzeugung kostspielig
   © VEGAS



In-Situ-Sanierung mit Hilfe der Chemie - (wie) geht das ?

bei kalkreichen Böden), "kostspielig"

5. ÖVA Technologieworkshop Anwendung chemischer In-situ-Verfahren – (direkte) Einbringung von Stoffen ins Grundwasser Wien, Democenter, 20.11.2014

Kos

#### ISCR - Reagenzien (Reduktionsmittel)

- Eisen nullwertig "nano", "mikro" (oder Späne, Schwamm in PRB´s)
  nano / mikro infiltrierbar als Suspension, CKW, (Schwermetalle), hohe Dichte,
  Stabilität der Suspension, Transport im Aquifer, Langzeitstabilität / Reaktivität,
  Verhalten in der Umwelt, langsame, beherrschbare Reaktion, noch "kostspielig"
- Kompositmaterialien "Carbolron"
   Stabilität der Suspension, Transport im Aquifer, Langzeitstabilität / Reaktivität,
   Verhalten in der Umwelt, Kombination aus Adsorption und Reduktion, langsame,
   lang wirkende "Reaktion", noch "kostspielig"
- Nichteisen Metalle
   Mg, Al, noch in Entwicklung, Fragestellungen wie bei Eisen,
- → Hinweis:



EU-FP7 Projekt **NanoRem**: NanoRem - Taking Nanotechnological Remediation Processes from Lab Scale to End User Applications for the Restoration of a Clean Environment

www.nanorem.eu



#### Einsatz von ISCO

# "State-of-the-art" - Technologie in USA

ITRC-Handbuch (www.itrcweb.org/isco-2.pdf) als Anwendungshilfe:

- Laboruntersuchungen zur Dimensionierung über Schütteltests
- Praktische Hinweise zur Planung, Kostenermittlung und Durchführung
- Dokumentation von Problemen und Erfolgen bei Feldanwendung

## Probleme / Fragen bei der Anwendung

- Effektive Erschließung des Sanierungsfelds durch Reagenz
- Auswahl und Ermittlung Bedarf Reagenz
- Vermischungsprobleme zwischen Reagenz und Schadstoff
- Veränderung der hydraulischen Durchlässigkeit durch Clogging

© VEGAS



In-Situ-Sanierung mit Hilfe der Chemie - (wie) geht das ?

5. ÖVA Technologieworkshop Anwendung chemischer In-situ-Verfahren – (direkte) Einbringung von Stoffen ins Grundwasser Wien, Democenter, 20.11.2014

Kos

# KMnO<sub>4</sub> - Reaktionen

● Perchlorethen (OZ<sub>C</sub>= + 2) Säurenäquivalent (H<sup>+</sup>/C): + 1,33  $3 \text{ Cl}_2\text{C}=\text{CCl}_2 + 4 \text{ KMnO}_4 + 4 \text{ H}_2\text{O} \rightarrow 4 \text{ MnO}_2 + 12 \text{ Cl}^- + 4 \text{ K}^+ + 8 \text{ H}^+ + 6 \text{ CO}_2$ 

Massenverhältnis KMnO<sub>4</sub> / PCE = 1,27

Trichlorethen (OZ<sub>c</sub>= + 1) Säurenäquivalent: + 0,5  $Cl_2C=CHCl + 2 KMnO_4 \rightarrow 2 MnO_2 + 3 Cl^- + 2 K^+ + H^+ + 2 CO_2$ Massenverhältnis KMnO<sub>4</sub> / TCE = 2,4

■ Dichlorethen (OZ<sub>C</sub>= +/- 0) Säurenäquivalent: -0,33  $3 \text{ HCIC=CHCI} + 8 \text{ KMnO}_4 \rightarrow 8 \text{ MnO}_2 + 6 \text{ CI}^- + 8 \text{ K}^+ + 2 \text{ OH}^- + 2 \text{ H}_2\text{O} + 6 \text{ CO}_2$ Massenverhältnis KMnO<sub>4</sub> / DCE = 4,3

## KMnO<sub>₄</sub> Bedarf

und die organische Masse C<sub>org</sub>:

Glukose ( $OZ_C = +/-0$ )

Säurenäquivalent: -1,33

 $C_6H_{12}O_6 + 8 \text{ KMnO}_4 \rightarrow 8 \text{ MnO}_2 + 8 \text{ K}^+ + 8 \text{ OH}^- + 6 \text{ CO}_2 + 2 \text{ H}_2\text{O}$ 

Massenverhältnis KMnO<sub>4</sub> / C = 17,6

- → 1 g TOC verbraucht soviel Permanganat wie 14 g PCE Wird gesamtes C<sub>org</sub> von Permanganat oxidiert ? Oxidationsmittelbedarf für CKW vs. C<sub>org</sub> ?
- → Alle Reaktion führen zur Braunsteinbildung
  Tendenzielle Abnahme der hydraulischen Leitfähigkeit:
  Ausmaß unklar

© VEGAS



In-Situ-Sanierung mit Hilfe der Chemie - (wie) geht das ?

5. ÖVA Technologieworkshop Anwendung chemischer In-situ-Verfahren – (direkte) Einbringung von Stoffen ins Grundwasser Wien, Democenter, 20.11.2014

Kos

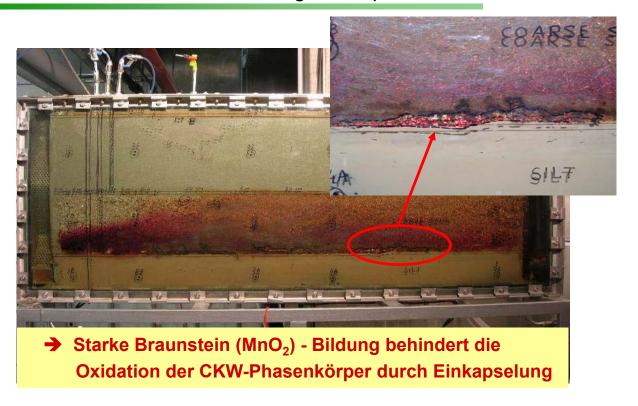
## ISCO - 2D Experiment

Oxidant: 0,1 g/L KMnO<sub>4</sub> - Lösung

Kontamination Feinsand:
200 g PCE, 22 g TCE

Feinsand

V<sub>a</sub> = 0,1 m/d


Grobsand

Kontamination Grobsand: 370 g PCE, 40 g TCE

© VEGAS

**Schluff** 

## Braunsteinbildung 2D Experiment



© VEGAS



In-Situ-Sanierung mit Hilfe der Chemie - (wie) geht das ?

5. ÖVA Technologieworkshop Anwendung chemischer In-situ-Verfahren – (direkte) Einbringung von Stoffen ins Grundwasser Wien, Democenter, 20.11.2014

Kos

# ISCO Kurzcharakterisierung (1)

- Reagenz und Schadstoffe müssen in Kontakt gebracht werden
  - → Lage und Verteilung der Schadstoffe muss bekannt sein
- Wirksamkeit der Oxidation von CKW in Batchtests nachgewiesen (> 99,7%)
- Der mit Permanganat oxidierbare Kohlenstoff muss standortspezifisch in Säulenversuchen bestimmt werden
- TOC-Gehalt des Bodens zur Bestimmung des Bedarfs an Oxidationsmittel ungeeignet
- Batch-Tests zur Bestimmung des Bedarfs an Oxidationsmittel als Screening-Methode geeignet
- Bedarf an KMnO4 zur Oxidation von C<sub>org</sub> ist sehr hoch, ISCO für Fahnensanierung meist unwirtschaftlich

#### ISCO Kurzcharakterisierung und Fazit

- Reaktionsprodukte (z.B. Braunstein) können den Kontakt blockieren
- Nebenreaktionen bzw. zu heftige Reaktionen führen zu unerwünschten Produkten oder zu starker Wärmeentwicklung
- pH-Verschiebungen ist im Feld häufig kritisch
- Reduktive Verfahren in aeroben Aquiferen meist wenig geeignet
- > Chemische Verfahren haben durchaus Potential als in-situ-Verfahren wenn:
  - sorgfältige Erkundung im Vorfeld,
  - Verhältnisse am Standort insbesondere der Grundwasserchemismus, Schadstoffzusammensetzung, Bodenmatrix berücksichtigt werden
  - Voruntersuchungen im Einzelfall (standortspezifisch)
  - Reagenzien sind standortspezifisch auszuwählen.

© VEGAS



In-Situ-Sanierung mit Hilfe der Chemie - (wie) geht das ?

5. ÖVA Technologieworkshop Anwendung chemischer In-situ-Verfahren – (direkte) Einbringung von Stoffen ins Grundwasser Wien, Democenter, 20.11.2014

Kos 25

